倾斜状态下数字天顶仪快速定位方法分析

张西辉,周召发,刘先一,朱文勇

(火箭军工程大学 兵器发射理论与技术国家重点学科实验室,陕西 西安 710025)

摘 要:针对数字天顶仪在精确调平状态下进行天文定位时存在耗费时间长,定位速度慢的缺点,从 数字天顶仪的定位原理出发,采用方向余弦矩阵转换原理建立了倾斜角的修正模型,分析和推导了经 过倾斜角修正之后的定位方法,改进了倾斜状态下数字天顶仪的切平面和球面三角形两种定位算法。 实现定位时设备不经精调平,加快定位速度的目的。通过实验比较了在倾斜状态下经过改进后两种类 型定位算法的定位精度。实验表明:球面三角形法的定位精度相对较高,经纬度计算精度能够达到 0.5″以内。

关键词:数字天顶仪; 倾斜状态; 切平面原理; 球面三角形法; 定位速度 中图分类号: P222 文献标志码: A **DOI**: 10.3788/IRLA201847.0217002

Analysis of the fast positioning method of digital zenith camera in tilt state

Zhang Xihui, Zhou Zhaofa, Liu Xianyi, Zhu Wenyong

(State Key Discipline Laboratory of Armament Launch Theory and Technology, Rocket Force University of Engineering, Xi'an 710025, China)

Abstract: Aiming at the problem of long time and slow positioning speed when the digital zenith camera was in precise leveling state for astronomical positioning, based on the principle of positioning the digital zenith camera, the correction model of the inclination angle was established by the direction cosine matrix transformation principle, the positioning method after the correction of the tilt angle was analyzed and deduced, and the two kinds of localization algorithms of the tangent plane and the spherical triangle of the digital zenith were improved, achieved the positioning of equipment without fine leveling, speeded up the positioning speed of the purpose. The accuracy of the two types of positioning algorithms in the tilted state was compared by experiment. Experiments show that the positioning accuracy of the spherical triangle method is relatively high, and the calculation accuracy of the latitude and longitude can reach 0.5'' or less.

Key words: digital zenith camera; tilt state; tangent plane principle; spherical triangle method; positioning speed

收稿日期:2017-08-05; 修订日期:2017-10-03

基金项目:国家自然科学基金(41174162)

作者简介:张西辉(1992-),男,硕士生,主要从事定位定向技术方面的研究。Email:785564025@qq.com

导师简介:周召发(1973-),男,教授,博士生导师,博士,主要从事定位定向与基准传递技术方面的研究。Email:549285422@qq.com

0 引 言

运用数字天顶仪进行定位是一种高准确度的天 文定位方法 [1-3]。在 21 世纪初德国与瑞士联合研制 的 TZK2-D 数字天顶仪的定位准确度可以到达 0.05"^[4]。国内近期研制的 DZT-1 数字天顶仪的定位 准确度也有了较大的提高^[5],但是相对于国外而言, 国内数字天顶仪还处于一个样机的阶段,不够成熟。 目前国内外对数字天顶仪的算法进行了大量的研 究,德国的 Christian Hirt、Halicioglu^[6-7]等人对切平面 法在天文定位中的运用进行研究,中国科学院国家 天文台的王博、田立丽、王政等人¹⁸¹对切平面法进行 过部分改进;中国科学院西安光学精密机械研究所 的曾志雄、胡晓东等人阿提出了利用球面三角形进 行定位的方法,但是他们的定位算法都是将设备在 精确调平后进行的,存在操作过程复杂,耗费时间 长,定位速度慢的缺点。具体而言:将数字天顶仪进 行精确调平时需要利用调平脚螺和长气泡水准仪进 行反复调节,直至设备转动到任意位置时气泡位于 水准仪中央(不超过1/2格),然后再根据双轴倾角传 感器的读数不断调节脚螺直至双轴倾角传感器的读 数在10″以内,此操作过程繁琐且操作熟练的人员耗 费时间也将在5min左右,因此利用数字天顶仪在倾 斜状态下定位能够不经精调平,直接通过粗调平后 便进行定位,简化操作过程、加快定位速度。算法的 思想是在传统的切平面定位方法和球面三角形定位 方法基础上,引入倾斜角的补偿,对倾斜角利用方向 余弦矩阵进行修正, 使倾斜的坐标系转换到水平面 上来。最后通过实验对两种改进的定位算法在精度 上进行了比较,论证了定位的速度和精度。

1 倾斜状态下切平面定位方法

1.1 两 CCD 平面直角坐标系之间的旋转变换

两平面直角坐标系之间的无压缩和无拉伸变形 的旋转关系可以用变换矩阵来描述,且该矩阵必定 是单位正交矩阵,两平面之间任何复杂的旋转关系 都可以用两种基本的旋转方式复合而成。

数字天顶仪在倾斜状态下进行定位时,CCD平 面直角坐标系也随之处于倾斜状态,故需要利用方 向余弦矩阵将倾斜状态下的 CCD 平面直角坐标系 转换成水平状态下的 CCD 平面直角坐标系。两平面 直角坐标系的位置关系如图 1 所示。

图 1 两 CCD 平面直角坐标系位置示意图

由图所知,坐标系 o_px_py_p为水平状态下的理想坐标系,坐标系 o_xx_xy_x为倾斜状态下的坐标系,o_xx_x、o_xy_x轴与水平状态下 o_px_py_p坐标系的夹角分别为 a 和b。

(1) 绕 x_x 轴方向旋转

设倾斜状态下 CCD 平面直角坐标系为 o_xx_yx_x (旧 坐标系),绕 x_x 轴旋转 b 角得坐标系 o₁x₁y₁ (过渡坐标 系),则可以写出变换矩阵:(1)倾斜状态下 CCD 平面 直角坐标系 x_x 轴的坐标 x_x(视作单位长度 1)在过渡坐 标系中投影依旧写为[1 0]^T;(2)根据图 2,旧坐标 y_x(视 作单位长度 1)在过渡坐标系中投影写为[0 cosb]^T。则旧 坐标系与过渡坐标系之间的坐标转换关系为:

图 2 绕 x_x 轴旋转 b 角示意图

(2) 绕 y₁ 轴方向旋转

设坐标系 $o_1x_1y_1(过渡坐标系)$ 绕 y_1 轴旋转 a 角得 到水平状态下的 CCD 平面直角坐标系 $o_px_py_p(新坐标$ $系),则可以写出变换矩阵:(1) 过渡坐标系 <math>y_1$ 轴的坐 标 $y_1(视作单位长度 1)在新坐标系中投影依旧写为$ $[1 0]^T;(2) 根据图 3,过渡坐标系 <math>x_1$ 轴的坐标 $x_1(视$ 作单位长度 1)在新坐标系中投影写为[cosa 0]^T。则 过渡坐标系与新坐标系之间的坐标转换关系为:

图 3 绕 y_1 轴旋转 a 角示意图 Fig.3 Schematic diagram of the a angle around the y_1 axis

所以根据公式(1)、(2)可得新坐标系与旧坐标系 之间的坐标转换关系为:

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} \cos a & 0 \\ 0 & \cos b \end{bmatrix} \begin{bmatrix} x_x \\ y_x \end{bmatrix}$$
(3)

1.2 切平面定位原理

恒星赤道坐标属于球坐标系,为了建立与 CCD 平 面坐标之间的关系,需将赤道坐标投影到过接近天顶 相切的切平面上,建立切平面坐标系 O'XY。切平面坐 标系是以测站点概略天文坐标(α₀,δ₀)确定的垂轴与天 球的交点 O'为原点,以子午线切线方向为 X 轴,以卯 酉圈切线方向为(α,δ)轴确定的平面直角坐标系,X 轴 与 Y 轴分别指向北向与东向。天文坐标为(X,Y)的恒星 在切平面上的坐标可表示为(X,Y),如图 4 所示。

图 4 切平面投影原理图 Fig.4 Schematic of tangent plane projection

定位时,数字天顶仪先拍摄星图,然后通过星图 识别算法识别恒星在天球中的坐标(α,δ),并计算恒 星在 *XO*′*Y* 中的坐标,投影变换公式为:

$$\begin{cases} X = \frac{\tan(\alpha - \alpha_0)\cos q}{\cos(q - \delta_0)} \\ Y = \tan(q - \delta_0) \end{cases}$$
(4)

式中: $\cot q = \cot \delta \cos(\alpha - \alpha_0)_{\circ}$

运用 Helmert 变换式建立起天球切平面坐标系 与水平状态下的 CCD 平面直角坐标系之间的映射 关系,则有:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} m & -n \\ n & m \end{bmatrix} \begin{bmatrix} x_p \\ y_p \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
(5)

根据公式(3),可得:

式中:*a*₁、*a*₂为位移参数;*m*为补偿坐标轴方向差的 参数;*n*为补偿坐标尺度变化的参数。

利用恒星在 o_px_py_p 和 XO'Y 中的坐标,计算 o_px_py_p 和 XO'Y 之间的转换关系。在理想状况下, o_px_py_p 的原 点 o_p 即为测站点的位置,故将中心点坐标(0,0)代入 公式(6),可得 o_p 在 XO'Y 中的坐标(a₁, a₂),代入切平 面反变换公式为:

$$\begin{aligned} \alpha_i &= \alpha_0 + \arctan \frac{X_i}{\cos \delta_0 - Y_i \sin \delta_0} \\ \delta_i &= \frac{\arctan(Y_i + \tan \delta_0) \cos(\alpha - \alpha_0)}{1 - Y_i \tan \delta_0} \end{aligned}$$
(7)

经过多次迭代计算得到 o_p 在天球上的坐标(α_{ccd} , δ_{ccd} , 做时间补偿后即可得到测站点的天文坐标:

$$\begin{cases} \Phi = \delta_{\rm ccd} \\ \Lambda = \alpha_{\rm ccd} - \Theta \end{cases}$$
(8)

式中: Θ为春分点格林时角。

2 倾斜状态下球面三角形定位方法

在测站点上数字天顶仪的光轴倾斜指向天顶获 取恒星的影像。进行星图识别后可以得到恒星的天 球赤道坐标,计算出恒星影像坐标的理论值,并测量 恒星影像坐标的实际值,通过最小二乘平差法,获得 测站天顶的天球赤道坐标。

数字天顶仪在倾斜状态下进行定位时,以 CCD 芯片的成像面作为量测坐标系 $o_x x_y x_x$,将原点设在 CCD 面阵的一角,两边分别为坐标轴 $o_x x_x$ 和 $o_x y_x$ 。坐 标轴 $o_x x_x$ 和 $o_x y_x$ 分别与水平面的夹角为 $a_x b_o$ CCD理 想坐标系 ONE 位于水平状态下的 CCD 平面直角坐 标系 $o_p x_p y_p$ 平面中,此坐标平面与数字天顶仪的垂直 轴垂直,并与以数字天顶仪焦距 f为半径的球面相 切,其切点即为 ONE 的原点 O,N 轴指向正北, E 轴 指向正东,坐标单位取为 mm,两坐标系间的夹角为 θ_o 如图 5 所示。

由天球的北极 P、测站点的天顶(α_0, δ_0)、任意一颗恒星(α, δ)构成球面三角形。根据投影关系,可以得出恒星在水平 CCD 坐标系中的理论坐标为:

$$y_p = y_c - \frac{f}{\text{pix}} \times \frac{\sin(\alpha - \alpha_0)\sin\theta - [\cos\delta_0 \tan\delta - \sin\delta_0 \cos(\alpha - \alpha_0)]\cos\theta}{\sin\delta_0 \tan\delta + \cos\delta_0 \cos(\alpha - \alpha_0)}$$
(10)

式中: x_c, y_c 为O在 $o_n x_n y_n$ 中的坐标,焦距的单位为mm, 两者均为已知量;pix为CCD像元尺寸,单位为mm; (α_0, δ_0) 为测站点的天球赤道经纬度; (α, δ) 为恒星的 赤经赤纬。

in the tilted state

以 GPS 测得的经纬度(α₀,δ₀)作为测站点初始概 略天文坐标值,对于任意一颗恒星的影像测量坐标 的误差方程为:

$$U = K\Delta X + M \tag{11}$$

使 U^TWU=min 的条件下可得:

$$\Delta X = -(K^{\mathrm{T}}K)^{-1}K^{\mathrm{T}}WM \tag{12}$$

式中: $\Delta X = [\Delta \delta \ \Delta \alpha \ \Delta \theta]^{\mathsf{T}}; K$ 为一次误差系数矩阵; W为 δ_{α} , θ 三个分量的权系数矩阵,此处权系数相 同,所以W为单位矩阵。

$$K = \begin{bmatrix} \frac{\partial x}{\partial \delta_0} & \frac{\partial x}{\partial \alpha_0} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \delta_0} & \frac{\partial y}{\partial \alpha_0} & \frac{\partial y}{\partial \theta} \end{bmatrix}$$
(13)
$$M = \begin{bmatrix} x_0 - x_p \\ y_0 - y_p \end{bmatrix}$$
(14)

因为实际量测坐标系 oxxxyx 与水平状态下的 CCD 平面直角坐标系 $o_p x_p y_p$ 存在夹角 $a \downarrow b$,故要利用 方向余弦矩阵进行坐标转换。

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} \cos a & 0 \\ 0 & \cos b \end{bmatrix} \begin{bmatrix} x_x \\ y_x \end{bmatrix}$$
(15)

式中:a、b为两个方向上的倾斜角,其数值可由双轴 倾角仪准确测出。xx、yx 由 CCD 量测坐标系得出。

根据初始值用公式(9)、(10)首先计算第 i 颗恒

星的理论坐标,结合实际测量坐标值(x_x, y_x),代入上 述式子计算出 K,M。把 K,M 代入公式(12),就可以 计算出三个未知量的偏差 ΔX .再把此偏差迭加到初 始值中求逼近的解,最后将求得的结果当作初始值, 重复上面的过程。经过数次重复计算后就可以得出 非常精确的解,从而求出测站点的天文经纬度。

3 实验数据处理与分析

实验过程中采用的数字天顶仪的视场角大小为 3°×3°, CCD 采用 KAF-16803 全画幅图像传感器, 分辨 率为 4096×4096, 像素大小 9 µm, 有效面积 36.8 mm× 36.8 mm。采用的双轴倾角仪为 Nivel210, 测量范围 为±410″,分辨率为0.2″。数字天顶仪工作时先顺时针拍 摄8幅星图,然后再逆时针拍摄8幅星图,然后将对称 位置上的2幅星图作为1个解算单元。已知测站点概 略的天文经度为109°,天文纬度为34°,以第一幅图像 为例可得出如表1所示的部分识别恒星数据。

表1部分识别恒星数据

Tab.1	Part	recognized	star	data
-------	------	------------	------	------

No	CCD x	CCD y	Star	Star	
NO.	coordinate/pixel	coordinate/pixel	$longitude/(^{\circ})$	latitude/(°)	
1	1 821.375 16	1 052.041 08	$108.972\ 47$	33.463 06	
2	582.921 23	1953.31429	107.57609	34.08786	
3	$1\ 018.702\ 61$	1331.17881	108.11297	33.609 88	
4	748.26738	1857.37714	107.76014	34.02619	
5	319.53101	$2\ 472.487\ 44$	107.22722	$34.497\ 55$	
6	3216.25936	$3\ 438.462\ 54$	$110.112\ 52$	35.64810	
7	$1\ 920.094\ 89$	$3\ 502.274\ 49$	108.74316	35.56498	
8	$1\ 504.530\ 94$	$2\ 033.581\ 84$	108.51435	34.26521	
9	$1\ 423.600\ 80$	$3\ 928.463\ 71$	108.161 98	35.87127	
10	$2\ 734.526\ 04$	$907.078\ 12$	109.92563	33.43656	
11	$2\ 919.020\ 83$	2999.05387	109.85569	35.24266	
12	642.03956	$3\ 025.738\ 30$	107.47785	35.008 39	
13	$3\ 489.853\ 35$	1196.17004	110.66539	33.75845	
14	$3\ 727.012\ 52$	1252.56350	110.90270	33.82923	
15	$2\ 884.676\ 47$	$1\ 741.878\ 43$	109.977~08	$34.164\ 83$	
16	$1\ 592.314\ 65$	3155.93289	108.44832	$35.232\ 48$	
17	$1\ 139.004\ 51$	2911.07223	$108.011\ 42$	34.971.06	
18	$1\ 552.523\ 84$	$549.738\ 07$	108.76510	$33.004\ 97$	
19	$2\ 170.039\ 78$	$2\ 542.978\ 78$	109.13423	34.773~93	
20	$2\ 647.552\ 22$	1229.34401	109.796 19	$33.702\ 65$	

对获取的实验数据根据切平面法定位原理和球 面三角形法定位原理设计定位算法,经过编程计算, 可得到在不同方位、不同倾斜状态、利用不同定位方 法计算出的结果如表2所示。

表25	定位结果
-----	------

Tab.2 Positioning results										
No. Position Dip angle Dip $N_1/(")$ N_2	Din angle Din a	Din angle	angle	Din angle	Din angle	Tangent plane method		Spherical triangle method		
	$N_2/(")$	Position	$N_1/(")$	$N_2/(")$	Calculate latitude/(°)	Calculate latitude/(°)	Calculate latitude/(°)	Calculate latitude/(°)		
1	1	73.64	-74.67	5	-99.01	74.05	34.299 54	109.0834	34.299 35	109.083 3
2	2	-6.81	-111.38	6	-18.15	113.86	34.29899	109.0844	34.29885	109.0843
3	3	-84.77	-81.06	7	64.97	81.47	34.29915	109.0851	34.29899	109.0848
4	4	-122.32	-8.87	8	100.45	5.36	34.29954	109.0845	34.29935	109.0845
5	9	100.24	5.36	13	-121.91	-9.08	34.29965	109.0845	34.29950	109.0845
6	10	64.97	81.68	14	-83.74	-80.86	34.29938	109.0847	34.29933	109.0848
7	11	-18.15	114.27	15	-5.36	-110.15	34.29935	109.0842	34.29907	$109.084\ 1$
8	12	-99.21	74.05	16	74.87	-72.8	34.299 90	109.0833	34.299 77	109.083 3

为了更明显地表示出倾斜状态下不同定位算法 的定位结果,画出两种方法定位结果计算值的分布 图如图 6 所示。

(a) Longitude calculation distribution of different positioning algorithm

(b) Latitude calculation distribution of different positioning algorithm

图 6 不同定位算法经、纬度计算值分布图

Fig.6 Distribution of latitude and longitude calculation of different positioning algorithm

通过上述两图可初步进行不同算法经纬度计算 值的精度比较。利用球面三角形定位原理计算出的 结果曲线较为平缓故计算精度较高。但是上述结论 仅仅是初步分析结果,所以为了更严密地分析不同 定位算法的定位精度,通过计算其标准差来比较定 位精度的高低,计算结果如表3所示。

表 3 不同定位算法经、纬度计算标准差 Tab.3 Standard deviation of longitude and latitude calculation of different positioning algorithm

Location algorithm	Longitude standard deviation/(")	Latitude standard deviation/(")
Tangent plane method	$1.47885054 \times 10^{-4}$	$1.347\ 042\ 55 \times 10^{-4}$
Spherical triangle method	$1.37150073 \times 10^{-4}$	1.297 122 96×10 ⁻⁴

通过表 3 可以看出球面三角形定位方法计算值 标准差小于切平面定位方法的计算值标准差,故由 球面三角形解算出来的天文经纬度精度较高。目前 在精确调平状态下天文定位的精度能达到 0.3",由 表 3 可知,在倾斜状态下解算出来的天文经纬度精 度可以达到 0.5"左右,相比而言倾斜状态下的解算 精度有所下降,但是倾斜状态定位时省去了对设备 精确调平的步骤,能够大大节省定位时间。

4 结 论

传统的定位方法都是将数字天顶仪精确调平后 进行的实验,存在操作过程复杂,耗费时间长,定位 速度慢的缺点。所以文中给出了设备在倾斜状态下 便可进行定位的两种方法,在传统的切平面定位方 法和球面三角形定位方法基础上,引入倾斜角的补 偿,对倾斜角利用方向余弦矩阵进行修正后进行解 算。实验表明,倾斜状态下解算出来的天文经纬度精 度可以达到 0.5",在定位精度损失不大的情况下,定 位速度得到提高,定位时间大为缩短。

参考文献:

- Tian Lili, Guo Jinyun, Han Yanben, et al. Digital zenith telescope prototype of China[J]. *Chin Sci Bull*, 2014, 59(12): 1094-1099. (in Chinese)
 田立丽,郭金运,韩延本,等.我国的数字化天顶仪样机
 [J]. 科学通报, 2014, 59(12): 1094-1099.
- [2] Song Laiyong. Research on theory and algorithm for measuring of vertical deflections based on CCD and GPS
 [D]. Jinan: Shandong University of Science and Technology, 2012. (in Chinese)

宋来勇. 基于 CCD/GPS 垂线偏差测量理论算法研究[D]. 济南: 山东科技大学, 2012.

[3] Guo Min, Zhang Hongying. The application of CCD in the astronomy orientation [J]. *Measurement Technology* *Equipment*, 2005, 7(1): 28-29. (in Chinese) 郭敏,张红英. CCD 数字摄影在天文定位测量中的运用探 讨[J]. 测绘技术装备, 2005, 7(1): 28-29.

- [4] Hirt C, Seeber G. Accuracy analysis of vertical deflection data observed with the hannover digital zenith camera system TZK2–D[J]. *Journal of Geodesy*, 2008, 82(6): 347–356.
- [5] Zhai Guangqing, Ai Guibin. Digital zenith camera astronomical positioning measurement of project implementation [J]. *Journal of Geomatics Science and Technology*, 2014, 31(3): 232-235. (in Chinese)
 翟广卿,艾贵斌.数字天顶仪摄影天文定位测量的工程实现[J]. 测绘科学技术学报, 2014, 31(3): 232-235.
- [6] Halicioglu K, Deniz R, Ozener H. Digital zenith camera system for astro-geodetic applications in turkey [J]. Journal of Geodesy and Geoinformation, 2012, 1(2): 115–120.
- [7] Hirt C, Bürki B, Somieski A, et al. Modern determintation of vertical deflections using digital zenith camera[J]. *Journal* of Surveying Engineering, 2010, 136(1): 1–12.
- [8] Wang Bo, Tian Lili, Wang Zheng, et al. The image and data processing in digital zenith camera [J]. Chin Sci Bull, 2014, 59(12): 1100-1107. (in Chinese)
 王博,田立丽,王政,等.数字化天顶望远镜观测图像及数 据处理[J]. 科学通报, 2014, 59(12): 1100-1107.
- [9] Zeng Zhixiong, Hu Xiaodong, Gu Lin, et al. The image processing in the digital zenith camera [J]. Acta Photonica Sinica, 2004, 33(2): 248-251. (in Chinese) 曾志雄, 胡晓东, 谷林, 等. 数字天顶仪摄影仪的图像处理 [J]. 光子学报, 2004, 33(2): 248-251.